Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 19  Maths Textbook Solution.

Answers (1)

Answer:

\log |\sin x|-\frac{\sin x}{6}-\frac{3 \sin ^{2} x}{2}+\frac{3 \sin ^{4} x}{4}+c

Given:

\int \frac{\cos ^{7} x}{\sin x} d x

Hint:

Use trigonometric identities and substitution method of integration.

Solution:

\int \frac{\cos ^{7} x}{\sin x} d x

Let t=\sin x

    d t=\cos x d x                            (on differentiating)

    now,

 I=\int \frac{\cos ^{7} x}{\sin x} d x

=\int \frac{\left(1-\sin ^{2} t\right)\left(1-\sin ^{2} t\right)\left(1-\sin ^{2} t\right)}{t} d t

=\int \frac{\left(1-t^{2}\right)^{2}\left(1-t^{2}\right)}{t} d t

=\int \frac{\left(1+t^{4}-2 t^{2}\right)\left(1-t^{2}\right)}{t} d t

=\int \frac{1-3 t^{2}+3 t^{4}-t^{6}}{t} d t

=\int \frac{1}{t}-3 t+3 t^{3}-t^{5} d t

=\operatorname{logt}-\frac{3 t^{2}}{2}+\frac{3 t^{4}}{4}-\frac{t^{6}}{6}+c

=\log |\sin x|-\frac{\sin x}{6}-\frac{3 \sin ^{2} x}{2}+\frac{3 \sin ^{4} x}{4}+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads