Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 54 Maths Textbook Solution.

 

Answers (1)

Answer:

I=\sin ^{-1} \sqrt{x}+\frac{1}{2} \sin 2 \sin ^{-1} \sqrt{x}+c

Given:

\int \sqrt{\frac{1-x}{x}} d x

Hint:

To solve this question we have to assume that x as sin²θ

Solution: 

I=\int \sqrt{\frac{1-x}{x}} d x

x=\sin ^{2} \theta \quad d x=2 \sin \theta \cos \theta d \theta

I=\int \frac{\sqrt{1-\sin ^{2} \theta}}{\sqrt{\sin ^{2} \theta}} d \theta(2 \sin \theta \cos \theta)

I=\int \frac{\sqrt{\cos ^{2} \theta}}{\sqrt{\sin ^{2} \theta}}(2 \sin \theta \cos \theta) d \theta

I=\int \cos \theta 2 \cos \theta d \theta

I=\int 2 \cos ^{2} \theta d \theta

I=\int(1+\cos 2 \theta) d \theta

I=\int 1 d \theta+\int \cos 2 \theta d \theta

I=\theta+\frac{1}{2} \sin 2 \theta+c

I=\sin ^{-1} \sqrt{x}+\frac{1}{2} \sin 2 \sin ^{-1} \sqrt{x}+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads