Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 74 Maths Textbook Solution.

Answers (1)

Answer:

 \sqrt{x^{2}+a x}+\frac{a}{2} \log \left|\left(x+\frac{a}{2}\right)+\sqrt{x^{2}+a x}\right|+c

Hint:

To solve the given statement multiply and divide the equation by a +x.

Given:

\int \sqrt{\frac{a+x}{x}} d x

Solution:

=\int \frac{a+x}{\sqrt{x(a+x)}} d x

=\frac{1}{2} \int \frac{2(a+x)}{\sqrt{x^{2}+a x}} d x

=\frac{1}{2}\left[\int \frac{2 x+a}{\sqrt{x^{2}+a x}} d x+\int \frac{a}{\sqrt{x^{2}+a x}} d x\right]

\left[d\left(\sqrt{x^{2}+a x}\right)=\frac{-1}{2 \sqrt{x^{2}+a x}}(2 x+a)\right]

\left[d\left(\sqrt{x^{2}+a x}\right)=\frac{a}{\sqrt{x^{2}+a x+\left(\frac{a^{2}}{4}\right)-\left(\frac{a^{2}}{4}\right)}}\right]

\left[d\left(\sqrt{x^{2}+a x}\right)=\frac{a}{\sqrt{\left(x+\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}}}\right]

=\frac{1}{2} \cdot 2 \sqrt{x^{2}+a x}+\int \frac{a}{\sqrt{\left(x+\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)}} d x

=\sqrt{x^{2}+a x}+a \log \left|\left(x+\frac{a}{2}\right)+\sqrt{x^{2}+a x}\right|

=\sqrt{x^{2}+a x}+\frac{a}{2} \log \left|\left(x+\frac{a}{2}\right)+\sqrt{x^{2}+a x}\right|+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads