Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 82 Maths Textbook Solution.

Answers (1)

Answer:

\frac{\tan ^{4} x}{4}+\frac{\tan ^{6} x}{6}+c

Hint:

You must know about the integration of tan x & sec x.

Given :

\int \tan ^{3} x \sec ^{4} x d x

Solution:

  \operatorname{let} \tan x=t, \sec ^{2} x d x=d t

\text { now, } \int \tan ^{3} x \cdot \sec ^{2} x \cdot \sec ^{2} x d x \ldots \ldots \ldots . . \text { (1) }

\text { put value of } \tan x=\operatorname{t} \text { (1) }

=\int t^{3}\left(1+\tan ^{2} x\right) \cdot \sec ^{2} x d x

=\int t^{3}\left(1+t^{2}\right) d t

=\int t^{3} d t+\int t^{5} d t

=\frac{t^{4}}{4}+\frac{t^{6}}{6}+c

=\frac{\tan ^{4} x}{4}+\frac{\tan ^{6} x}{6}+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads