Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 87 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{6}(3 x+2) \sqrt{3 x^{2}+4 x+1}-\frac{\sqrt{3}}{18} \ln \left|\left(x+\frac{2}{3}\right)+\sqrt{x^{2}+\frac{4 x}{3}+\frac{1}{3}}\right|+c

Hint:

You must know about how to solve integration.

Given:

\int \sqrt{3 x^{2}+4 x+1} d x

Solution:

\int \sqrt{3} \sqrt{x^{2}+\frac{4 x}{3}+\frac{1}{3}} d x

    \sqrt{3} \int \sqrt{x^{2}+\frac{4 x}{3}+\frac{4}{9}-\frac{4}{9}+\frac{1}{3}} d x

\sqrt{3} \int \sqrt{\left(x+\left(\frac{2}{3}\right)\right)^{2}-\frac{1^{2}}{3}} d x

\frac{1}{6}(3 x+2) \sqrt{3 x^{2}+4 x+1}-\frac{\sqrt{3}}{18} \ln \left|\left(x+\frac{2}{3}\right)+\sqrt{x^{2}+\frac{4 x}{3}+\frac{1}{3}}\right|+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads