Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.26 question 10

Answers (1)

Answer:
The correct answer is \frac{e^{x}}{(x+1)^{2}}+c
Given:

\int e^{x} \frac{x-1}{(x+1)^{3}} d x

Solution:

        I=\int e^{x} \frac{x-1}{(x+1)^{3}} d x

        \mathrm{I}=\int\left\{\frac{x+1-2}{(x+1)^{3}}\right\} e^{x} d x

           =\int\left\{\frac{1}{(x+1)^{2}}-\frac{2}{(x+1)^{8}}\right\} e^{x} d x

           =\int e^{x} \frac{1}{(x+1)^{2}} d x-2 \int e^{x} \frac{1}{(x+1)^{3}} d x

On using Integration by parts,

            =\left\{\frac{1}{(x+1)^{2}} \cdot e^{x}-\int e^{x} \frac{-2}{(x+1)^{3}} d x\right\}-2 \int e^{x} \frac{1}{(x+1)^{3}} d x

            =\frac{e^{x}}{(x+1)^{2}}+c

So, the correct answer  \frac{e^{x}}{(x+1)^{2}}+c

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads