Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.26 question 18

Answers (1)

Answer:
The correct answer is  e^{x} \sin ^{-1} x+c
Hint:

Using ILATE rule

\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c

Given:

\int e^{x} \frac{\sqrt{1-x^{2}} \sin ^{-1} x+1}{\sqrt{1-x^{2}}} d x

Solution:

        I=\int e^{x} \frac{\sqrt{1-x^{2}} \sin ^{-1} x+1}{\sqrt{1-x^{2}}} d x

It is in the form of,

        \int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x

Where    f(x)=\sin ^{-1} x

        \int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+c

So,

        \int e^{x}\left(\frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x\right)=e^{x} \sin ^{-1} x+c

So the correct answer is  e^{x} \sin ^{-1} x+c

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads