Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 105 Maths Textbook Solution.

Answers (1)

Answer:          \sqrt{1-x^{2}}\left(\frac{x}{2}-1\right)-\frac{1}{2} \sin ^{-1}(x)+C

Hint: to solve this equation, we have to assume u as \cos \Theta

Given: \int x \sqrt{\frac{1-x}{1+x}} d x

Solution: 

I=\int x \sqrt{\frac{1-x}{1+x}} d x

I=\int x \sqrt{\frac{(1-x)(1-x)}{(1+x)(1-x)}} d x

I=\int x \frac{(1-x)}{\sqrt{1-x^{2}}} d x

I=\int \frac{x-x^{2}}{\sqrt{1-x^{2}}} d x

I=\int \frac{x-x^{2}-1+1}{\sqrt{1-x^{2}}} d x

I=\int \frac{-x^{2}+1}{\sqrt{1-x^{2}}} d x+\int \frac{x-1}{\sqrt{1-x^{2}}} d x

I=\int \sqrt{1-x^{2}} d x+\int \frac{x}{\sqrt{1-x^{2}}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x

I=\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1}(x)+C_{1}-\sqrt{1-x^{2}}+C_{2}-\sin ^{-1}(x)

                             +C_{3}\left[\because \int \frac{x}{\sqrt{1-x^{2}}} d x=-\sqrt{1-x^{2}}+C_{2}\right]

I=\sqrt{1-x^{2}}\left(\frac{x}{2}-1\right)-\frac{1}{2} \sin ^{-1}(x)+C

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads