Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Indefinite Integrals exercise 18.8 question 36 maths

Answers (1)

Answer:

        log\left | x+cos^{2}x \right |+C

Hint:

        Put denominator=t

Given:

        \int \! \frac{1-sin\, 2x}{x+cos^{2}x}dx                    .......(1)

Explanation:

Let

        x+cos^{2}x=t

        [1+2cos\, x(-sin\, x)]dx=dt

        (1-2sin\, x\, cos\, x)dx=dt

        (1-2sin\, 2x)dx=dt

Put in (1) we get

        \int \! \frac{dt}{t}=log\left | t \right |+C

        =log\left | x+cos^{2}x \right |+C

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads