Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise 18.25 Question 14 Maths Textbook Solution.

Answers (1)

Answer: \frac{x^{n+1}}{n+1}\left[\log x-\frac{1}{n+1}\right]+c

Hint: \int u v d x=u \int v d x-\int \frac{d}{d x} u \int v d x

        Whereu=\log x, d v=x^{n} d x

Given: Let I=\int x^{n} \log x d x

Solution:

           \begin{aligned} &d u=\frac{1}{x}\left(v=\frac{x^{n+1}}{n+1}\right) \\ &=\frac{x^{n+1}}{n+1} \log x-\int \frac{x^{n+1}}{n+1}\left(\frac{1}{x}\right) \\ &=\frac{x^{n+1}}{n+1} \log x-\frac{1}{n+1} \int x^{n} d x \\ &=\frac{x^{n+1}}{n+1} \log x-\frac{x^{n+1}}{(n+1)(x+1)}+c \\ &=\frac{x^{n+1}}{n+1}\left[\log x-\frac{1}{n+1}\right]+c \end{aligned}

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads