Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 18 Indefinite Integrals Excercise Very Short answers Question 22

Answers (1)

Answer:

\frac{1}{4}e^{2x^{2}}+c

Hint: You must know about the integral rule of logarithm and exponential functions.

Given: \int e^{2x^{2}+\ln x}dx

Solution: I=\int e^{2x^{2}+\ln x}dx

        =\int x.e^{2x^{2}}dx                                                      \left [ e^{\log x} =x\right ]                              

Let x^{2}=t  and differentiate both sides, \frac{d}{dx}x^{n}=nx^{n-1}

2xdx=dt

I=\frac{1}{2}\int e^{2t}dt

=\frac{e^{2t}}{4}+c                                                                 \left [ \int e^{ax} dx=\frac{e^{ax}}{a}\right ]

=\frac{1}{4}e^{2x^{2}}+c

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads