Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 18 Indefinite Integrals Excercise Very Short Answers Question 33

Answers (1)

Answer: \frac{e^{x}}{x}+c

Hints: You must know about the integral rule of exponential functions

Given: \int e^{x}\left ( \frac{1}{x}-\frac{1}{x^{2}} \right )dx

Solution:

\int e^{x}\left ( \frac{1}{x}-\frac{1}{x^{2}} \right )dx

It is of form

\int e^{x}f\left ( x \right )+{f}'\left ( x \right )dx=e^{x}.f\left ( x \right )+c

Put f\left ( x\right )=\frac{1}{x} and differentiate both sides,   

{f}'\left ( x\right )=\frac{-1}{x^{2}}

Thus,

\int e^{x}\left ( \frac{1}{x}-\frac{1}{x^{2}} \right )dx=\frac{e^{x}}{x}+c

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads