Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 18 Indefinite Integrals Excercise Very Short Answers Question 60

Answers (1)

Answer: \frac{\pi x}{2}-\frac{x^{2}}2{}+c

Hints: You must know about the rules of integration of trigonometric and inverse trigonometric functions.

Given: \int \cos ^{-1}\left ( \sin x \right )dx

Solution:

\int \cos ^{-1}\left ( \sin x \right )dx

Let \cos ^{-1}\left ( \sin x \right )=\theta

\begin{aligned} &\sin x=\cos \theta \\ &\sin x=\sin \left(\frac{\pi}{2}-\theta\right) \\ &x=\left(\frac{\pi}{2}-\theta\right) \\ &\theta=\frac{\pi}{2}-x \\ &\therefore \int \cos ^{-1}(\sin x)dx=\int \left ( \frac{\pi}{2}-x \right )dx \\ &=\int \frac{\pi}{2} d x-\int x dx \\ \end{aligned}

=\frac{\pi x}{2}-\frac{x^{2}}2{}+c

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads