Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise 18.20 Question 11 Maths Textbook Solution.

Answers (1)

Answer:x+\log \left|\frac{x}{x+1}\right|+c

Given: \int \frac{x^{3}+1}{x^{3}-x} d x

Hint: using Partial Fraction and \int \frac{1}{x} d x

Explanation: Let

                     I=\int \frac{x^{3}+1}{x^{3}-x} d x

          \frac{x^{3}+1}{x^{3}-x}=\left(1+\frac{x+1}{x^{3}-x}\right)=1+\frac{x+1}{x\left(x^{2}-1\right)}

                          =1+\frac{x+1}{x(x-1)(x+1)}=1+\frac{1}{x(x-1)}

\therefore \int \frac{x^{3}+1}{x^{3}-x} d x=\int 1 d x+\int \frac{1}{x(x+1)} d x

                              =x+I_{1}   ...................(1) Where I_{1}=\int \frac{1}{x\left ( x+1 \right )}dx

         \frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{(x+1)}

Multiplying by x\left ( x+1 \right )

1=A\left ( x+1 \right )+B\left ( x+1 \right )

Putting x = -1

1=A\left ( 0+1 \right )+B\left ( 0 \right )\Rightarrow A=1

\begin{aligned} &\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{(x+1)} \\ &\therefore \int \frac{1}{x(x+1)} d x=\int \frac{1}{x} d x-\int \frac{1}{x+1} d x \end{aligned}

                                   =\log |x|-\log |x+1|

Put in (1)

\begin{aligned} I &=x+\log |x|-\log |x+1|+c \\ &=x+\log \left|\frac{x}{x+1}\right|+c \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads