Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D. Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 111 Maths Textbook Solution.

Answers (1)

Answer:I=x \sec ^{-1} \sqrt{x}-\sqrt{x-1}+C

Hint: to solve this equation we have to useByparts equation;

           Given: I=\int \sec ^{-1} \sqrt{x} d x

Solution: Let \sec ^{-1} \sqrt{x} \text { be the first function and } 1 \text { as the second function }

I=\sec ^{-1} \sqrt{x} \cdot x-\int \frac{1}{\sqrt{x} \sqrt{x-1} \cdot 2 \sqrt{x}} \ldots . . \text { Using Byparts }

I=x \sec ^{-1} \sqrt{x}-\frac{1}{2} \int(x-1)^{-1 / 2} d x

I=x \sec ^{-1} \sqrt{x}-\sqrt{x-1}+C

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads