Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 30 Probability  Exercise Multiple Choice Questions  Question 60 Maths Textbook Solution.

Answers (1)

Answer:(a)

Hint: You must know the rules of finding probability.

Given: A and B are independent such that

\begin{aligned} &0<P(A)<1 \\ &0<P(B)<1 \end{aligned}

Solution: If A and B are independent

P(A \cap B)=P(A) \times P(B)

Now,

\begin{aligned} &P(A \cap \bar{B})=P(A)-P(A \cap B) \\ &=P(A)-P(A) P(B) \\ &=P(A)\{1-P(B)\} \\ &=P(A) P(\bar{B}) \end{aligned}

Hence \mathrm{A} and \overline{\mathrm{B}} are indepemdent

Similarly,

\begin{aligned} &P(\bar{A} \cap \bar{B})=1-P(A \cup B) \\ &=1-P(A) \times P(B)-P(A \cap B) \\ &=1-P(A) \times P(B)-P(A) P(B) \\ &=1(1-P(A))-P(B)\{1-P(A)\} \\ &=\{1-P(A)\}-\{1-P(B)\} \\ &=P(\bar{A})-P(\bar{B}) \end{aligned}

\text { Hence } \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}} \text { are independent }

\begin{aligned} &P\left(\frac{A}{B}\right)+P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}+\frac{P(\bar{A} \cap B)}{P(B)} \\ &=\frac{P(A) P(B)+P(\bar{A}) P(B)}{P(B)} \\ &\text { and } 1-P(A)=P(\bar{A}) \\ &\therefore 1=P(A)+P(\bar{A}) \\ &\therefore \frac{P(A \cap B)}{P(B)}+\frac{P(\bar{A} \cap B)}{P(B)} \\ &=\frac{P(A) P(B)+P(\bar{A}) P(B)}{P(B)} \\ &=\frac{P(B)(P(A)+P(\bar{A}))}{P(B)} \\ &=1 \end{aligned}

\therefore Option \mathrm{A} is incorrect because \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(A) P(B) \neq 0

Since \mathrm{P}(A)>0 and P(B)>0

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads