Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 30 Probability  Exercise 30.5 Question 26 Maths Textbook Solution.

Answers (1)

Answer:

P\left ( A\: winning \right )=\frac{4}{7}

P\left ( B\: winning \right )=\frac{2}{7}

P\left ( C\: winning \right )=\frac{1}{7}

Hint: You must know the rules of finding probability functions.

Given: A, B, C are in order. The one to throw a head wins.

Solution: P(A winning) = P(head in first toss)+P(head in 4th toss)+….

\begin{aligned} &=\frac{1}{2}+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)+\ldots \ldots \\ &=\frac{1}{2}\left[1+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{6}+\ldots\right] \\ &=\frac{1}{2}\left[\frac{1}{1-\left(\frac{1}{2}\right)^{3}}\right] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad\left[1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}\right] \\ \end{aligned}

\begin{aligned} &=\frac{1}{2}\left[\frac{1}{1-\frac{1}{8}}\right] \\ &=\frac{1}{2} \times \frac{8}{7} \\ &=\frac{4}{7} \end{aligned}

P(B winning)= P(head in second toss)+P(head in 5th toss)+….

\begin{aligned} &=\left(\frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)+\ldots \ldots . \\ &=\frac{1}{4}\left[1+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{6}+\ldots\right] \\ &=\frac{1}{4}\left[\frac{1}{1-\left(\frac{1}{2}\right)^{3}}\right] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad\left[1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}\right] \\ \end{aligned}

\begin{aligned} &=\frac{1}{4}\left[\frac{1}{1-\frac{1}{8}}\right] \\\\ &=\frac{1}{4} \times \frac{8}{7} \\\\ &=\frac{2}{7} \end{aligned}

P (C winning)= P(head in third toss)+P(head in 6th toss)+….

\begin{aligned} &=\left(\frac{1}{2} \times \frac{1}{2}\times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\times \frac{1}{2}\right)+\ldots \ldots . \\ &=\frac{1}{8}\left[1+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{6}+\ldots\right] \\ &=\frac{1}{8}\left[\frac{1}{1-\left(\frac{1}{2}\right)^{3}}\right] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad\left[1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}\right] \\ \end{aligned}

\begin{aligned} &=\frac{1}{8}\left[\frac{1}{1-\frac{1}{8}}\right] \\\\ &=\frac{1}{8} \times \frac{8}{7} \\\\ &=\frac{1}{7} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads