Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 30 Probability  Exercise 30.5 Question 27 Maths Textbook Solution.

Answers (1)

Answer:

P\left ( A\: winning \right )=\frac{36}{91}

P\left ( B\: winning \right )=\frac{30}{91}

P\left ( C\: winning \right )=\frac{25}{91}

Hint: You must know the rules of finding probability functions.

Given:  Three persons A,B,C throw a die in succession till one gets a six and wins the game.

Solution:

\begin{aligned} &P(\operatorname{six})=\frac{1}{6} \\ &P(\text { no } \operatorname{six})=\frac{5}{6} \\ &P(\text { A winning })=P(6 \text { in first throw })+P(6 \text { in fourth throw })+\ldots \\ \end{aligned}

\begin{aligned} &=\frac{1}{6}+\left(\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}\right)+\ldots \ldots . \\ &=\frac{1}{6}\left[1+\left(\frac{5}{6}\right)^{3}+\left(\frac{5}{6}\right)^{6}+\ldots\right] \\ \end{aligned}

\begin{aligned} &=\frac{1}{6}\left[\frac{1}{1-\frac{125}{216}}\right] \quad\left[1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}\right] \\\\ &=\frac{1}{6} \times \frac{216}{91} \\\\ &=\frac{36}{91} \end{aligned}

\begin{aligned} &P(\mathrm{~B} \text { winning })=P(6 \text { in second throw })+P(6 \text { in fifth throw })+\ldots \\ \end{aligned}

\begin{aligned} &=\frac{5}{6} \times \frac{1}{6}+\left(\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}\right)+\ldots . . . \\\\ &=\frac{5}{36}\left[1+\left(\frac{5}{6}\right)^{3}+\left(\frac{5}{6}\right)^{6}+\ldots\right] \\ \end{aligned}

\begin{aligned} &=\frac{5}{36}\left[\frac{1}{1-\frac{125}{216}}\right] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \quad\left[1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}\right] \\\\ &=\frac{5}{36} \times \frac{216}{91} \\\\ &=\frac{30}{91} \end{aligned}

 

\begin{aligned} &P(\mathrm{~C} \text { winning })=P(6 \text { in third throw })+P(6 \text { in sixth throw })+\ldots \\ \end{aligned}

\begin{aligned} &=\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\left(\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}\right)+\ldots \ldots \\\\ &=\frac{25}{216}\left[1+\left(\frac{5}{6}\right)^{3}+\left(\frac{5}{6}\right)^{6}+\ldots\right] \\ \end{aligned}

\begin{aligned} &=\frac{25}{216}\left[\frac{1}{1-\frac{125}{216}}\right] \quad\left[1+a+a^{2}+a^{3}+\ldots=\frac{1}{1-a}\right] \\\\ &=\frac{25}{216} \times \frac{216}{91} \\\\ &=\frac{25}{91} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads