Get Answers to all your Questions

header-bg qa

Need solution for RD sharma maths class 12 chapter 30 probablity exercise Very short answer question, question 18

Answers (1)

The value of p is \frac{5}{12} or \frac{1}{3}

Hint:

If A and B are independent then,

P(A\cap B)=P(A).P(B)  and

P(exactly one of the two events occurs) = P(A)+P(B) - 2P(A \cap B)

Given:

A and B are independent events such that

P(A) = p

P(B) = 2p

P(exactly one of A and B occurs) = \frac{5}{9}

Explanation:

It is given that

P(exactly one of A and B occurs) = \frac{5}{9}
\begin{aligned} &\Rightarrow \frac{5}{9}=P(A)+P(B)-2 P(A \cap B) \\ &=p+2 p-2 \cdot P(A) \cdot P(B) \\ \end{aligned}                                                         [ since,PA ∩B=PAPB] 

\begin{aligned} &\Rightarrow \frac{5}{9}=p+2 p-2 \cdot p \cdot 2 p \\ &\Rightarrow \frac{5}{9}=3 p-4 p^{2} \\ &\Rightarrow 27 p-36 p^{2}=5 \\ &\Rightarrow 36 p^{2}-27 p+5=0 \\ \end{aligned}

Using quadratic formula, we have

\begin{aligned} p &=-\frac{(-27) \pm \sqrt{(-27)^{2}-4(36) 5}}{2 \times 36} \\ \end{aligned}

\begin{aligned} &=\frac{27 \pm \sqrt{729-720}}{72} \\ &=\frac{27 \pm \sqrt{9}}{72} \\ &=\frac{27 \pm 3}{72} \\ \end{aligned}

\begin{aligned} &\Rightarrow p=\frac{27+3}{72} \text { or } \quad p=\frac{27-3}{72} \\ &\Rightarrow p=\frac{30}{72} \quad \text { or } p=\frac{24}{72}\\ &\Rightarrow p=\frac{5}{12} \quad \text { or } p=\frac{1}{3} \end{aligned}

Hence, the value of p is  \frac{5}{12} or \frac{1}{3}

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads