Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Probability exercise 30.7 question 7

Answers (1)

Answer:

 \frac{2}{3}

Hint:

Use Baye’s theorem. 

Given:

 Suppose 5 men out of 100 and 25 women out of 1000 are good orator. An orator chose at random. Find the probability that make person is selected. Assume equal number of men and women.

Solution:

Let A, E1and E2  two events that person is good orator.

Thus

\begin{aligned} &P(E_1)=\frac{1}{2}\\ &P(E_2)=\frac{1}{2}\\ &P\left ( \frac{A}{E_1} \right )=\frac{5}{100}\\ &P\left ( \frac{A}{E_2} \right )=\frac{25}{1000}\\ \end{aligned}

Using Baye’s theorem we get

\begin{aligned} &P\left (\frac{E_1}{A} \right )=\frac{P(E_2).P\left ( \frac{A}{E_1} \right )}{P(E_1)\times P\left ( \frac{A}{E_1} \right )+P(E_2)\times P\left ( \frac{A}{E_2} \right )}\\ &P\left (\frac{E_2}{A} \right )=\frac{\frac{1}{2}\times \frac{5}{100}}{\frac{1}{2}\times \frac{5}{100}+\frac{1}{2}\times \frac{25}{1000}}\\ &=\frac{1}{1+\frac{1}{2}}\\ &=\frac{2}{3} \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads